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Abstract The transient rotation of a liquid drop in an infinite gaseous medium is analyzed for two cases: viscous
retardation from constant-speed rotation, and steady-torque start-up with development to the steady state. This
situation arises when a levitated liquid drop is rotated with an acoustically applied torque. Subsequent changes in
the torque cause transient effects. To understand such a system, the two basic problems of start-up and retardation
are studied. The rotational Reynolds number is considered to be low enough so that nonlinear inertial effects may
be neglected. The Laplace-transform method is used to deal with the time dependence. Since the fluid velocity has
only the azimuthal direction (and the profile is independent of it), and the other angular dependence is factorable
as sin θ , the solution turns out to be effectively a two-variable problem in r and t . Nevertheless, the finite mass of
the spherical drop and its finite viscosity make it a mathematically challenging problem. Besides the full analytical
solution, results are obtained in the limits of a solid sphere, and small time for the liquid drop. In all liquid-drop
cases, the results are limited to the drop viscosity being higher than the surrounding region. For several common
liquids in a gas, the flow field indicates nearly a solid-sphere like behavior, except at small times in the region near
the interface. The deviations from the asymptotic center-point velocity are amplified for illustration.

Keywords Laplace transform · Levitation · Rotating drop · Stokes flow · Transient fluid dynamics

1 Introduction

We have been motivated to study the transient dynamics of a rotating levitated liquid drop as a result of our
preliminary study of the fluid dynamics of containerless protein crystal growth [1]. In the study of protein crystal
growth, one of the aims is to enhance the crystal quality. Towards attaining this goal, containerless processing
presents several advantages. One such system has been developed by Chung and Trinh [2] who have used an elec-
trostastically levitated drop of crystal solution (lysozyme) and rotated it acoustically about a horizontal axis. Such
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a process neutralizes some gravitational effects and proper control of rotational speed can effectively contain the
growing crystal within the confines of the solution drop.

Our analytical investigation for the dynamics of a rotating drop containing a solid particle has led us to a more
fundamental problem of the transient dynamics of a rotating drop which may be manipulated by altering the inten-
sity of the rotational torque. With the idea of investigating this in more detail, we consider a liquid drop that is
experiencing two different transients, one when the torque is turned off, and another when the torque is turned on.
In the first case, a drop is initially rotating steadily under the force of a constant but spatially non-uniform torque.
Under such circumstances, the drop rotates like a solid body. However, when the torque is turned off, motion within
the drop ensues due to the redistribution of shear stress at the drop surface. In the second case, as an initially
stationary drop, a torque is applied and the drop begins rotating and eventually achieves the steady state. In such
cases, we are interested in determining the flow characteristics within the drop and in understanding the limits of
the parameters under which the basic rotation may be regarded as solid-body type for the modeling of the more
complex problem of a particle within a rotating drop.

To understand the dynamics, we consider a drop rotating steadily with angular speed, �0; at time t = 0 the torque
is turned off, causing the drop to begin decelerating. The other end of the problem is the case when drop rotation
is started with a constant but non-uniform torque, σ0 sin θ , and ends up in steady state with a constant rotational
speed. Even though in actual experiments the start-up of an acoustic torque causes a more complex flow field [3],
our study is just an attempt to understand transients in a more fundamental sense. The results are limited to cases
in which the liquid-drop viscosity is higher than that of the surrounding medium.

The studies of a rotating solid sphere go back many decades [4–6]. Among these works, the transient effects
have been treated by Ghildyal [6] who analyzed a solid sphere rotating at a constant rotational speed. This is a
considerably simpler problem than the current one, considering that both the fluidity of the particle and its finite
mass are not factored.

2 Problem statement and method of solution

We consider a liquid drop of radius r0 levitated in an unbounded gaseous medium and rotating about a horizontal
axis with angular velocity �0. In our analysis, the rotation rate is assumed to be sufficiently low for the velocity field
in the gaseous medium as well as within the rotating drop to be approximated by a Stokes flow (Re � 1). We define
the flow Reynolds numbers based on the angular velocity �0 so that Re = �0r2

0 /ν � 1 and R̂e = �0r2
0 /ν̂ � 1.

From here on, the hat (∧) is used to denote parameters in the liquid phase. We may also define the Ekman number
Ek = Re−1 which represents the ratio of the viscous to the rotational forces. When Ek � 1, the Ekman layer is
sufficiently thick to allow the fluid flow to have only the φ-component of velocity. In a spherical coordinate system,
the unsteady Stokes equations governing the system are:

Liquid drop : ∂ ûφ

∂t
= ν̂

(
∇2ûφ − ûφ

r2 sin2 θ

)
, (1a)

Gaseous environment:
∂uφ

∂t
= ν

(
∇2uφ − uφ

r2 sin2 θ

)
. (1b)

The initial and boundary conditions depend on whether the problem is for a decelerating drop or a start-up case.
Therefore, these are discussed in Sects. 3 and 4, respectively. We now assume that the solutions of (1) may be written
as follows

ûφ = û(r, t) sin θ, (2a)

uφ = u(r, t) sin θ. (2b)

Inserting (2) into (1) and using the Laplace-transform method, one can write the transformed equations as follows:

r2Û ′′ + 2rÛ ′ −
(

sr2

ν̂
+ 2

)
Û = −r2û(r, 0)

ν̂
, (3a)
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Transient dynamics of a rotating spherical liquid drop 253

r2U ′′ + 2rU ′ −
(

sr2

ν
+ 2

)
U = −r2u(r, 0)

ν
, (3b)

where Û (r, s) ≡ L
{
û(r, t)

}
and U (r, s) ≡ L {u(r, t)} denote Laplace transforms. The initial velocities u(r, 0) and

û(r, 0) are given in Sects. 3 and 4 for the respective decelerating and start-up cases in terms of ûφ and uφ .The general
solution of the set of equations (3) that remains bounded for both media, takes the form

Û (r, s) = Ĉ1

(
e(r/r0)X̂ [(r/r0)X̂ − 1] + e−(r/r0)X̂ [(r/r0)X̂ + 1]

r2

)
+ û(r, 0)

s
, (4a)

U (r, s) = C1

(
e−(r/r0)X [(r/r0)X + 1]

r2

)
+ u(r, 0)

s
. (4b)

where X̂ = √
sτ̂ and X = √

sτ . At this point, we define the dimensionless radial coordinate, R = r/r0. However,
we shall use the notation (r/r0) for clarity, wherever appropriate. The parameters τ̂ and τ are the diffusion time
scales with respect to the kinematic viscosity of liquid drop and gas media, respectively, and can be defined as

τ̂ = r2
0

ν̂
and τ = r2

0

ν
.

It should be noted that (4) consists of the homogeneous and particular solutions which correspond to time-
dependent and time-independent parts, respectively. The unknown coefficients Ĉ1 and C1 must be determined by
boundary and interface conditions which will be specified later.

3 Case of a decelerating liquid drop

We begin our analysis with the case in which a liquid drop is initially rotating steadily in a gaseous medium at
angular velocity �0. With a steady torque applied on a homogeneous drop, the rotating drop will maintain rotational
motion as a solid body in the steady-state situation. The flow field in the gaseous medium is simply given by the
steady Stokes-flow solution of a rotating sphere in an infinite medium. The rotating drop is allowed to decelerate
by turning off the torque. Thus, the initial and boundary conditions of this problem are given by

ûφ = �0r sin θ, uφ = �0r3
0

r2 sin θ at t = 0, (5a)

and

ûφ = uφ, σ̂rφ = σrφ at r = r0, (5b)

for which the Laplace transforms are rather straight forward.
The solutions of (4) satisfying the transforms of the conditions (5) are

Û (r, s) = �0r

s
− 3δ�0r3

0

r2

(
(X + 1){e(r/r0)X̂ [(r/r0)X̂ − 1] + e−(r/r0)X̂ [(r/r0)X̂ + 1]}

s	

)
, (6a)

U (r, s) = �0r3
0

sr2 − 3δ�0r3
0

r2

(
[(r/r0)X + 1][e−[(r/r0)−1]X+X̂ (X̂ − 1) + e−[(r/r0)−1]X−X̂ (X̂ + 1)]

s	

)
. (6b)

Here 	 = eX̂ (c11 X̂3 + c12 X̂2 + c13 X̂ + c14) − e−X̂ (c21 X̂3 + c22 X̂2 + c23 X̂ + c24)

where

c11 = κ + δκ2, c21 = κ − δκ2,

c12 = 1 − 3(1 − δ)κ − δκ2, c22 = 1 + 3(1 − δ)κ − δκ2,

c13 = 3(1 − δ)(κ − 1), c23 = 3(1 − δ)(κ + 1),

c14 = c24 = 3(1 − δ), δ = µ/µ̂, κ = √
ν̂/ν, δκ2 = ρ/ρ̂ = λ.
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Thus the shear stress in the rotating drop is

Ŝrφ = −3µ�0

(
(X + 1){eX̂ [(r/r0)

2 X̂2 − 3(r/r0)X̂ + 3] − e−(r/r0)X̂ [(r/r0)
2 X̂2 + 3(r/r0)X̂ + 3]}

s	

)
. (7)

For large s, the transformed equations (6) and (7) can be expanded as an asymptotic series in negative exponentials.
The series-expansion equations take the form

Û (r, s) = �0r

s
− 3δ�0r3

0

r2

(
(X + 1){e−(1−r/r0)X̂ [(r/r0)X̂ − 1] + e−(1+r/r0)X̂ [(r/r0)X̂ + 1]}

s(c11 X̂3 + c12 X̂2 + c13 X̂ + c14)

∞∑
n=0

G(s)n

)
, (8a)

U (r, s) = �0r3
0

sr2 − 3δ�0r3
0

r2

(
[(r/r0)X + 1][e−[(r/r0)−1]X (X̂ − 1) + e−[(r/r0)−1]X−2X̂ (X̂ + 1)]

s(c11 X̂3 + c12 X̂2 + c13 X̂ + c14)

∞∑
n=0

G(s)n

)
, (8b)

and

Ŝrφ = −3µ�0

(
(X + 1){e(r/r0)X̂ [(r/r0)

2 X̂2−3(r/r0)X̂ + 3]−e−(r/r0)X̂ [(r/r0)
2 X̂2 + 3(r/r0)X̂+3]}

s(c11 X̂3 + c12 X̂2+ c13 X̂ + c14)

∞∑
n=0

G(s)n

)

(9)

where

G(s) = e−2X̂

(
c21 X̂3 + c22 X̂2 + c23 X̂ + c24

c11 X̂3 + c12 X̂2 + c13 X̂ + c14

)
and Ŝrφ = L{σ̂rφ}.

3.1 Solid-particle limit (δ → 0)

One can see that, when the ratio of viscosities is zero, the problem is simply that of a solid sphere rotating in an
infinite fluid. In the limit of δ → 0, while holding the densities fixed, we can obtain the velocity field induced by
the rotating sphere from (6b) as follows:

U (r, s) = �0r3
0

sr2 + �0r3
0

r2

(
[�(s) − s−1]1 + (r/r0)X

1 + X
e−[(r/r0)−1]X

)
, (10a)

where

�(s) = X + 1 + 5λ

X3 + (1 + 5λ)X2 + 15λ(X + 1)
,

which may be decomposed in the form

�(s) = m + ni

X − a − bi
+ m − ni

X − a + bi
+ p

X − c
. (10b)

Here, λ is the density ratio between gas media and a solid sphere. With the use of standard inversion tables [7], the
time-dependent solution of (10) can be obtained for all (r, t) (see Appendix A). The resulting velocity field outside
the sphere is given by

u(r, t) = �0r3
0

r2 (1 + I1 + I2) , (11)

where

I1 = L−1
(

�(s)
1 + RX

1 + X
e−(R−1)X

)
= I11 + I12 + I13 + I14,

and

I2 = L−1

(
1 + RX

1 + X

e−(R−1)X

s

)
= erfc

(
R − 1

2
√

t/τ

)
+ (R − 1) erfc

(
R − 1

2
√

t/τ
+ √

t/τ

)
e−(1−R− t

τ ).
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Transient dynamics of a rotating spherical liquid drop 255

Here,

I11 =
(

Re {Z} + α

β
+ pR

)
e− (R−1)2τ

4t√
π t/τ

,

I12 =
(

1 − R
1 − c

− α

β

)
e−(1−R− t

τ ) erfc

(
(R − 1)

2
√

t/τ
+ √

t/τ

)
,

I13 = −c

(
1 − cR
1 − c

)
e(R−1)c+c2 t

τ erfc

(
(R − 1)

2
√

t/τ
+ c

√
t/τ

)
,

and

I14 = − 2

β
Re

{
(a + bi) e(a+bi)(R−1)+(a2+b2) t

τ erfc

(
(R − 1)

2
√

t/τ
+ (a + bi)

√
t/τ

)}
,

where

Z = 2(m + ni)[(a + bi)R − 1][(a − bi) − 1], α = 2(R − 1)[m(1 − a)− nb], β = [(1 − a)2 + b2] and R = (r/r0).

3.2 Fluid–fluid system: general solution in integral representation

An examination of the set of equations (6) shows that there are several fairly complex terms whose inverse Laplace
transforms are not available in the standard tables. We obtain the inverses of such terms by employing a contour
integral in the complex plane. The inverse of the first term in each of (6a) and (6b) is simply a time-independent
solution while the remaining terms constitute the time-dependent parts. We have

û(r, t) = �0r − 3δ�0r3
0

r2

γ+i∞∫
γ−i∞

ets (X + 1){e(r/r0)X̂ [(r/r0)X̂ − 1] + e−(r/r0)X̂ [(r/r0)X̂ + 1]}
s	

ds, (12a)

u(r, t) = �0r3
0

r2 − 3δ�0r3
0

r2

γ+i∞∫
γ−i∞

ets [(r/r0)X + 1][e−[(r/r0)−1]X+X̂ (X̂ − 1) + e−[(r/r0)−1]X−X̂ (X̂ + 1)]
s	

ds. (12b)

It can be seen that the integrands of (12) have poles and are double-valued at s = 0, therefore possessing a branch
point there. Using the standard contour integral, one can show that the integration along a small circle around the
branch point produces a term such that it cancels out the time-independent solution. Thus, we finally arrive at the
following set of results
Flow fields:

û(r, t) = 3δ�0r3
0

πr2

∞∫
0

e−tρ(
√

τρ A − B)

ρ(A2 + B2)
{sin[(r/r0)(τ̂ρ)1/2] − (r/r0)(τ̂ρ)1/2 cos[(r/r0)(τ̂ρ)1/2]}dρ, (13a)

u(r, t) = 3δ�0r3
0

πr2

∞∫
0

e−tρ(AC − B D)

ρ(A2 + B2)
dρ; (13b)

Shear stress:

σ̂rφ = 3µ�0r3
0

πr3

∞∫
0

e−tρ(
√

τρ A − B)

ρ(A2 + B2)
{[(r/r0)

2τ̂ ρ − 3] sin[(r/r0)
√

τ̂ ρ] + 3(r/r0)
√

τ̂ ρ cos[(r/r0)
√

τ̂ ρ]} dρ, (14)

where

A = [(c24 + c14) − τ̂ ρ(c22 + c12)] sin(τ̂ρ)1/2 − [(c23 − c13) − τ̂ ρ(c21 − c11)](τ̂ρ)1/2 cos(τ̂ρ)1/2,

B = [(c24 − c14) − τ̂ ρ(c22 − c12)] cos(τ̂ρ)1/2 + (c23 + c13) − τ̂ ρ(c21 + c11)](τ̂ρ)1/2 sin(τ̂ρ)1/2,

C = (cos θ2 − cos θ1) + (sin θ2 + sin θ1)
√

τ̂ ρ + R
√

τρ[(sin θ2 − sin θ1) − (cos θ2 + cos θ1)
√

τ̂ ρ],
D = (sin θ2 − sin θ1) − (cos θ2 + cos θ1)

√
τ̂ ρ − R

√
τρ[(cos θ2 − cos θ1) + (sin θ2 + sin θ1)

√
τ̂ ρ],
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with

θ1 = (R − 1)
√

τρ −
√

τ̂ ρ and θ2 = (R − 1)
√

τρ +
√

τ̂ ρ and R = (r/r0)

3.3 Small-time approximation

The transformed equations (8) and (9) can be inverted term by term to obtain the solutions applicable for small
times, i.e., t � τ̂ . The inverse Laplace-transform procedure adopted here is straightforward, but rather tedious and
similar to that of the solid-sphere case. First, each term which contains a ratio of cubic function in series expansion
is split into simpler ratios by using partial-fraction expansion. In carrying out this approximation, we keep only
two terms in the large-s expansions given by the summations in (8). Then, employing Eqs. A.1, A.2 and A.3 in
Appendix A, one obtains the inverses of Û (r, s), U (r, s) and σ̂rφ(r, s) using the first two terms of the summations
in the set. These are given below:
Flow fields:
The drop-interior velocity field is given by

û(r, t) = �0r0

(
(r/r0) − 3δ

(δκ2 + κ)(r/r0)2

4∑
n=1

Î 0
n − 3δ(δκ − 1)

κ(δκ + 1)2(r/r0)2

8∑
n=1

Î 1
n

)
, (15a)

and in the exterior,

u(r, t) = �0r0

(
1

(r/r0)2 − 3δ

(δκ2 + κ)(r/r0)2

4∑
n=1

I 0
n − 3δ(δκ − 1)

κ(δκ + 1)2(r/r0)2

8∑
n=1

I 1
n

)
, (15b)

where I 0
n , I 1

n , Î 0
n , and Î 1

n are long expressions representing various inverses involving the erfc integral (see
Appendix A).
Shear stress:
The shear stress is given by

σ̂ (r, t) = µ�0

(
3

(δκ + 1)(r/r0)

4∑
n=1

Ĵ 0
n + 3(δκ − 1)

(δκ + 1)2(r/r0)

8∑
n=1

Ĵ 1
n

)
, (16)

where again, the expressions for Ĵ 0
n and Ĵ 1

n are available in Appendix B. Note that the set of coefficients am, bm

and cm in (15) and (16) are introduced during the partial-fraction-expansion process and given in Appendix A.

4 Case of rotation start-up

In this section we consider the case of an initially stationary drop placed under a steady torque with a sin θ -type
distribution. The drop will eventually achieve the steady state and rotate steadily with a constant angular velocity,
�0. It should be recognized that acoustic streaming used in drop levitation induces not only the torque in a time-
averaged sense but also the internal circulation within a liquid drop with velocity O(δ). However, the viscosity of
a liquid drop is considerably higher than that of a gas medium, i.e., δ � 1. Hence the acoustically driven internal
circulation is negligibly small in this investigation. Therefore, the appropriate initial and boundary conditions are
given by

ûφ = 0, uφ = 0 at t = 0, (17a)

and

ûφ = uφ, σ̂rφ − σrφ = σ0 sin θ at r = r0. (17b)
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Transient dynamics of a rotating spherical liquid drop 257

The solutions of (4) satisfying the conditions (17) or their Laplace transforms are

Û (r, s) = σ0r3
0 δ

µr2

{
(X + 1){e(r/r0)X̂ [(r/r0)X̂ − 1] + e−(r/r0)X̂ [(r/r0)X̂ + 1]}

s	

}
, (18a)

U (r, s) = σ0r3
0 δ

µr2

{
[(r/r0)X + 1][e−[(r/r0)−1]X+X̂ (X̂ − 1) + e−[(r/r0)−1]X−X̂ (X̂ + 1)]

s	

}
. (18b)

The shear stress is

Ŝrφ = σ0

(
(X + 1){e(r/r0)X̂ [(r/r0)

2 X̂2 − 3(r/r0)X̂ + 3] − e−(r/r0)X̂ [(r/r0)
2 X̂2 + 3(r/r0)X̂ + 3]}

s	

)
. (19)

In a similar manner, the inverse Laplace transforms of (18) and (19), using the inversion theorem, are given as

û(r, t)= σ0r0

µ

⎛
⎝− r

3r0
+ δr2

0

πr2

∞∫
0

e−tρ(B−√
τρ A)

ρ(A2 + B2)
{sin[(r/r0)(τ̂ρ)1/2] − (r/r0)(τ̂ρ)1/2 cos[(r/r0)(τ̂ρ)1/2]} dρ

⎞
⎠,

(20a)

u(r, t) = σ0r0

µ

⎛
⎝− r2

0

3r2 + δr2
0

πr2

∞∫
0

e−tρ(B D − AC)

ρ(A2 + B2)
dρ

⎞
⎠. (20b)

However, it is noted that, contrary to the previous case, the first term of the equations which arises from the inte-
gration along a small circle around the branch point survives in this case and represents a steady-state solution of
problem. The shear-stress distribution within the liquid drop is obtained as

σ̂rφ = σ0r3
0

πr3

∞∫
0

e−tρ(
√

τρ A − B)

ρ(A2 + B2)

{
[(r/r0)

2τ̂ ρ − 3] sin[(r/r0)
√

τ̂ ρ + 3(r/r0)
√

τ̂ ρ cos[(r/r0)
√

τ̂ ρ]
}

dρ. (21)

In (20) and (21), the coefficients A, B, C , and D are those defined in (14).

4.1 Limit of δ → 0

In the limit of δ → 0, the problem can be viewed as a solid sphere rotating in an infinite fluid as the result of the
applied torque σ0 sin θ . The velocity field of the ambient fluid is reduced to

U (r, s) = σ0r3
0

µr2

e−[(r/r0)−1]X

s

(
1 + (r/r0)X

X3 + (1 − 5λ)X2 − 15λ(X + 1)

)
. (22)

Similarly, using the partial-fraction expansion procedure, we may write (22) in the form:

U (r, s) = σ0r3
0

µr2

e−[(r/r0)−1]X

s

(
m + ni

X − a − bi
+ m − ni

X − a + bi
+ p

X − c

)
. (23)

Here, a complex conjugate pair a ± bi and a real constant c are the roots of the denominator in (22) which is similar
to the denominator of �(s) in (10b). The values of m, n and p are, of course, slightly different from those in (10b).
The inverse Laplace transform of (23) can be obtained by the use of standard inversion tables and is given by

u(r, t) = σ0r3
0

µr2 (I1 + I2) (24)

where

I1 = 2Re

{
m + ni

a + bi

[
−erfc

(
R − 1

2
√

t/τ

)
+ e−(a+bi)(R−1)+(a+bi)2 t

τ erfc

(
R − 1

2
√

t/τ
− (a + bi)

√
t/τ

)]}
,
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and

I2 = − p

c
erfc

(
R − 1

2
√

t/τ

)
+ p

c
e−c(R−1)+c2 t

τ erfc

(
R − 1

2
√

t/τ
− c

√
t/τ

)
with R = (r/r0).

As mentioned earlier, the start-up problem for a solid sphere was studied in 1960 by Ghildyal [6]. In that work,
the problem of a given step-function steady angular velocity was solved. However, in comparison with the current
problem, Ghildyal’s [6] work corresponds to an infinite moment of inertia of the solid sphere. In the present case, the
sphere mass is finite and, therefore, there are added complexities necessitating finding the roots of a cubic equation
(denominator of (10b)).

4.2 Small-time approximation

The inversions of (18) and (19) for small time are

û(r, t) = σ0r0

µ

(
δ

(δκ2 + κ)(r/r0)2

4∑
n=1

Î 0
n + δ(δκ − 1)

κ(δκ + 1)2(r/r0)2

8∑
n=1

Î 1
n

)
, (25a)

u(r, t) = σ0r0

µ

(
δ

(δκ2 + κ)(r/r0)2

4∑
n=1

I 0
n + δ(δκ − 1)

κ(δκ + 1)2(r/r0)2

8∑
n=1

I 1
n

)
. (25b)

The shear stress is

σ̂ (r, t) = σ0

(
− 1

(δκ + 1)(r/r0)

4∑
n=1

Ĵ 0
n + (1 − δκ)

(δκ + 1)2(r/r0)

8∑
n=1

Ĵ 1
n

)
. (26)

5 Results and discussion

We have carried out velocity and shear-stress calculations for various sets of parameters. It should be noted that the
expressions for the velocity fields of a rotating drop in an infinite fluid are valid only in the low-Reynolds-number
approximation. The numerical calculations are presented in this section. In all figures, the results for t � τ are cal-
culated from small-time solutions (faster convergence) and t > τ from the general solution. For the case δ → 0 the
solid-sphere calculations are used. It is worthwhile discussing the evaluation of the integral-representation solution
of such problems. The problem of integral evaluation is not quite as straightforward because of the complexity of
the integrand. Since an analytical expression for the integral could not be found, numerical integration is necessary.
The integrals in (20) and (21) are along the real ρ-axis, and the respective integrands each contain a complex pole
near the real axis close to some point ρ = ρ0. This gives rise to some difficulty in computing the integral since
the integrand takes on large values when approaching ρ = ρ0. The location of a nearby pole must be determined
and the integration is divided into two parts, 0 ≤ ρ ≤ ρ0 and ρ0 ≤ ρ < ∞. The second integral needs to be
evaluated by making a change of variable that transforms the infinite range to one that is finite when ρ approaches
infinity. Then, the integration is performed using a six-point Newton–Cotes formula [8]. For a small-time solution,
the calculation is straightforward because the solutions are expressed explicitly. The results are compared to those
of the integral-representation solutions and the full range of solutions can therefore be established.

It is noted that the results presented in this section are in dimensionless form. Here, we choose the following
scales: r0 as length, τ̂ as time, �0r0 or σ0r0/µ as velocity, and 3µ�0 or σ0 as tangential stress.

5.1 Deceleration of a rotating drop

Figure 1 shows the transient flow field of a rotating water drop in a gaseous medium. In the steady-state situation,
the tangential stress due to the applied torque is entirely taken up by the outer medium and the drop will rotate like a
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Fig. 1 Velocity fields for a water drop initially rotating with
angular velocity �0 in a gas with δ = 0.01863 and κ = 0.25459

Fig. 2 Scaled deviations of the velocity inside the drop from the
solid-body velocity (δ = 0.01863, κ = 0.25459)

Fig. 3 Interfacial shear stress vs. dimensionless time, t/τ̂ Fig. 4 Scaled velocity deviation from us of various liquid
drops at t = 0.3τ̂ . I: silicone oil, II: water, III: methanol,
IV: acetone

solid body. When the applied torque is turned off, the shear stresses at the drop interface starts getting redistributed.
The skin friction retards the drop rotation and the angular velocity decreases as time progresses. The velocity is
seen to diffuse in time since the system is viscosity-dominated. The exponential character in time with reciprocal of
the diffusion time-scale as a factor. As expected, the transient effect initially takes place on the surface from inside
and spreads into the drop inside as illustrated in Fig. 2. Here, we plot ud = (û − us)/us , the scaled deviation of the
velocity inside the drop from the solid-body velocity, us = �(t)r . The solid-body velocity used here is not that of
the exact solid-sphere case but the velocity defined by the asymptotic value of û as r → 0. This is a suitable scaling
because the liquid region velocity is nearly equal to this value for short times. It shows that the liquid in the region
close to the drop surface is slowed down by surface friction and the region away from the surface still maintains a
solid-body-like rotation at t = 0.01τ̂ . However, the shear stress gradually penetrates into the center of the drop
as illustrated. Consequently, the flow inside the drop starts deviating from the solid-body-like rotation. The larg-
est deviation apparently occurs at the drop surface and reaches a maximum at t ∼= 0.3τ̂ , approximately. There-
after, the shear stress inside the drop is slowly depleted as the transient effect dies down. The velocity pro-
file deviates from solid-body rotation less than 0.5% for t > 1.01τ̂ . The interfacial shear stress is shown in
Fig. 3. The shear stress is seen to decrease monotonically with increasing time and becomes insignificant for
t > 20τ̂ .
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Table 1 Parameters of
various liquid drops in air
(at 20◦C)

Fluid ν (m2/s) ν (m2/s) κ δ

Silocone oil, I 1.02016 × 10−5 0.003194 0.81352 0.00192
Water, II 0.09720 × 10−5 0.000986 0.25459 0.01863
Methanol, III 0.07459 × 10−5 0.000864 0.22274 0.03070
Acetone, IV 0.04150 × 10−5 0.000644 0.16616 0.05517

Fig. 5 Velocity field in gaseous medium induced by a freely
rotating solid sphere (λ = 0.0012)

Fig. 6 Dimensionless velocity at the interface as a function of
the viscosity ratio δ for λ = 0.001 at various times

In addition, various liquids in a wide range of viscosities (which are shown in Table 1) were considered
as numerical examples and the results are shown in Fig. 4. The results are based entirely on the analytical
results obtained with numerical calculations. One can see that the deviation of the flow inside fluid I is much
smaller than those of other liquids. This is due to the fact that the viscosity of fluid I is relatively high and
therefore the transient effect is suppressed. In contrast, the liquid with low viscosity such as fluid III and fluid
IV is notably influenced by the transient effect. The surface stresses penetrate into the drop and the devia-
tion of flow inside the drop is comparatively large. At moderate viscosity, such as that of fluid II, the maxi-
mum deviation is approximately 3%. Therefore the solid-body-like rotation approximation is fairly reasonable,
especially for high viscous liquid drops, even though the flow at transient state is still affected by the skin
friction.

For the solid-sphere case, when turning off the applied torque, the sphere rotates freely and the rotational rate
decreases gradually due to surface tangential stresses. With a density ratio λ = 0.0012, the flow field induced by
the freely rotating sphere is shown in Fig. 5. To obtain more insight into the interplay of the various parameters, we
have plotted in Fig. 6 the velocity at the interface for constant λ (density ratio) while varying the viscosity ratio δ

for various values of the time. The results show a steady decrease of the interfacial velocity with increasing δ. The
results are limited to δ < 1 which is based on practical considerations for the system which motivated us to study
the problem in the first place. Additionally, for δ > 1, for the mathematical character of the solution changes to
discrete poles when carrying out the inverse Laplace transform, and therefore, this range was not tackled.

5.2 Drop-rotation start-up

The velocity development of a levitated drop under an applied steady torque is shown in Fig. 7. It can be seen that
the shear stress due to the applied torque initially drives fluids in vicinity of the drop surface. The viscous stress
gradually spreads towards the center of the drop and acts throughout. Then, the drop begins to rotate about its center.
As expected, the rotational velocity of the liquid drop increases under the steady torque; however, for t > 20τ , the
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Fig. 7 Velocity field in a rotating water drop and the surrounding
region with constant interfacial shear stress σ0 sin θ in an infinite
medium

Fig. 8 Liquid-velocity deviation ud = (û − us)/(�0r0) from
the asymptotic center-point velocity (steady torque start-up)

Fig. 9 Dimensionless interfacial velocity as a function of the
viscosity ratio δ for it λ = 0.001 at various times (steady torque
start-up)

Fig. 10 Tangential stresses at the surface of a water drop under
a steady torque

rotation eventually comes quite close to the steady state and the liquid drop steadily rotates like a solid body with a
constant rotation rate. In order to amplify the liquid-region velocity, the asymptotic velocity as r → 0 is subtracted,
and the resulting dimessionless velocity ud = (û − us)/(�0r0) is plotted in Fig. 8. Unlike the decelerating-drop
case, (û − us) is not divided by us for scaling because us is very nearly zero at very early times. In Fig. 9, the
interfacial velocity is plotted as a function of the viscosity ratio δ for a fixed density ratio λ = 0.001 at various
times. The results show a steady increase of the interfacial velocity with increasing δ.

The scaled interfacial shear stress is plotted in Fig. 10 against scaled time. Note that the sign of the shear stress
in the plot indicates only the direction of shear stress. The result shows that the shear stress decreases gradually
after the applied torque is exerted on the drop surface. It is consistent with the velocity development shown above;
indeed, the interfacial stress at the liquid side vanishes as the drop rotates like a solid body in steady state. In this
state, the applied shear stress on the drop surface is taken up entirely by the motion of the gas, and the liquid drop
is able to maintain a steady solid-body rotation.

For the solid-sphere case, when turning on the torque, the sphere starts to rotate about its axis as expected. For
a density ratio λ = 0.0012, the development of the velocity induced by the rotating sphere is shown in Fig. 11.
As one might anticipate from the results, the sphere, as well as the induced flow field, will reach a steady state and
the applied shear stress is entirely taken up by the fluid motion.
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Fig. 11 Velocity field in a
gaseous medium induced by
a rotating solid sphere under
a steady shear stress σ0 sin
θ (λ = 0.0012)

As in the decelerating-drop case, we have provided a plot of the interfacial velocity as a continuous function of
the viscosity ratio δ for various values of time and fixed density ratio λ. For short times, a steady and gentle decrease
of the interfacial velocity with increasing viscosity ratio is seen. For large times, the decrease is quite sharp.

6 Conclusions

The transient dynamics of a rotating drop has been studied in the limit of the low-Reynolds-number approximation.
The results show that the transient effect initially takes place at the drop surface when the applied torque is either
turned on or off. The transient effect will gradually spread into the drop inside and vanish eventually. The maximum
deviation of the drop-velocity distribution from the solid-body velocity takes place at the drop surface. However, the
deviation depends on the viscosity of the liquid drop. For highly viscous liquids, the velocity deviation is relatively
small, especially away from the drop surface. Therefore, for the liquids under consideration, turning the applied
torque on or off will affect the velocity field of the rotating drop very little and it is reasonable to approximate the
bulk of the drop motion by a solid-body rotation. For short times (order of 0 − 0.3τ ) soon after start-up or slow
down, the stress on the surface of the drop may not be negligible.
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Appendix A: Relevant inverse Laplace transforms

L−1
[

e−zx

s

]
= erfc

(
x

2(at)1/2

)
, (A.1)

L−1
[

e−zx

s(z + k)

]
= 1

k
erfc

(
x

2(at)1/2

)
− 1

k
ekx+ak2t erfc

(
x

2(at)1/2 + k(at)1/2
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, (A.2)

L−1
[

e−zx

s(z + k)2

]
= 1

k2 erfc

(
x

2(at)1/2

)
− 2

k

(
at

π

)1/2

×e−x2/4at − 1

k2 (1 − kx − 2ak2t) erfc

(
x

2(at)1/2 + k(at)1/2
)

ekx+ak2t , (A.3)

where, z = (s/a)1/2; a and x are positive real while k may be complex. The values of k are given by the various
roots of the cubic polynomial in the denominator of the term G(r, s) in (8) and (9), as well as �(s)in (10b).
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The expressions for the individual real and imaginary components of the roots am, bm, cm are given in Appendix
C. Other inverse Laplace transforms involving these parameters are given in Appendix B.

Appendix B: Expressions for I0
n , I1

n, Ĵ0
n and Ĵ1
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where
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and R = (r/r0) is the dimensionless radial coordinate.
The coefficients am , bm , and cm , are given in Appendix C.
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+a8

[
[2+κ(R−1)]a1

a2
1+b2

1

− 2a1b1

(a2
1+b2

1)
2

])
�4e[2+κ(R−1)]a1+(a2

1−b2
1) t

τ̂ sin θ4

}
,

I 1
8 = c8

c2
1

{
erfc

(
2 + κ(R − 1)√

4t/τ̂

)
− c1

√
4t

π T̂
e− [2+κ(R−1)]2 τ̂

4t −
[

1 − [2 + κ(R − 1)]c1

−2c2
1t

τ̂

]
e[2+κ(R−1)]c1+ c2

1 t

τ̂ erfc

(
2 + κ(R − 1)√

4t/τ̂
+ c1

√
t/τ̂

)}
,

Ĵ 0
1 = 2

{
a1a9 + b1b9

a2
1 + b2

1

erfc

(
1 − R√

4t/τ̂

)
−

[
a1a9 + b1b9

a2
1 + b2

1

cos θ1 − a1b9 − b1a9

a2
1 + b2

1

sin θ1

]
�1e(1−R)a1+(a2

1−b2
1) t

τ̂

}
,

Ĵ 0
2 = −erfc

(
1 − R√

4t/τ̂

)
+ c9

c1

{
erfc

(
1 − R√

4t/τ̂

)
− ec1(1−R)+c2

1
t
τ̂ erfc

(
1 − R√

4t/τ̂
+ c1

√
t/τ̂

)}
,

Ĵ 0
3 = −2

{
a1a10+b1b10

a2
1+b2

1

erfc

(
1+R√
4t/τ̂

)
−

[
a1a10+b1b10

a2
1+b2

1

cos θ2−a1b10−b1a10

a2
1+b2

1

sin θ2

]
�2e(1+R)a1+(a2

1−b2
1) t

τ̂

}
,

Ĵ 0
4 = erfc

(
1 − R√

4t/τ̂

)
− c10

c1

{
erfc

(
1 + R√

4t/τ̂

)
− ec1(1+R)+c2

1
t
τ̂ erfc

(
1 + R

2
√

t/τ̂
+ c1

√
t/τ̂

)}
,

Ĵ 1
1 = 2

{
a1a11+b1b11

a2
1+b2

1

erfc

(
3−R√
4t/τ̂

)
−

[
a1a11+b1b11

a2
1+b2

1

cos θ3−a1b11−b1a11

a2
1+b2

1

sin θ3

]
�3e(3−R)a1+(a2

1−b2
1) t

τ̂

}
,

Ĵ 1
2 = −erfc

(
3 − R√

4t/τ̂

)
+ c11

c1

{
erfc

(
3 − R√

4t/τ̂

)
− ec1(3−R)+c2

1
t
τ̂ erfc

(
3 − R√

4t/τ̂
+ c1

√
t/τ̂

)}
,

Ĵ 1
3 = 2

{
(a2

1 − b2
1)a12 + 2a1b1b12

(a2
1 + b2

1)
2

erfc

(
3 − R√

4t/τ̂

)
− a1a12 + b1b12

a2
1 + b2

1

√
4t

πτ̂
e− (3−R)2 τ̂

4t +

−
(

a12

[
a2

1 − b2
1

(a2
1 + b2

1)
2

− a1(3 − R)

a2
1 + b2

1

− 2
t

τ̂

]
− b12

[
a1(3 − R)

a2
1 + b2

1

− 2a1b1

(a2
1 + b2

1)
2

])
�3e(3−R)a1+(a2

1−b2
1) t

τ̂ cos θ3 +

+
(

b12

[
a2

1 − b2
1

(a2
1 + b2

1)
2

− a1(3 − R)

a2
1 + b2

1

− 2
t

τ̂

]
+ a12

[
a1(3 − R)

a2
1 + b2

1

− 2a1b1

(a2
1 + b2

1)
2

])
�3e(3−R)a1+(a2

1−b2
1) t

τ̂ sin θ3

}
,

Ĵ 1
4 = c12

c2
1

{
erfc

(
3−R√
4t/τ̂

)
−c1

√
4t

πτ̂
e− (3−R)2 τ̂

4t −
[

1−c1(3−R)−2c2
1t

τ̂

]
ec1(3−R)+ c2

1 t

τ̂ erfc

(
3−R√
4t/τ̂

+c1

√
t/τ̂

)}

−erfc

(
3−R√
4t/τ̂

)
,

Ĵ 1
5 = −2

{
a1a13+b1b13

a2
1+b2

1

erfc

(
3+R√
4t/τ̂

)
−

[
a1a13+b1b13

a2
1+b2

1

cos θ4−a1b13−b1a13

a2
1+b2

1

sin θ4

]
�4e(3+R)a1+(a2

1−b2
1) t

τ̂

}
,
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Ĵ 1
6 = erfc

(
3 + R√

4t/τ̂

)
− c13

c1

{
erfc

(
3 + R√

4t/τ̂

)
− ec1(3+R)+c2

1
t
τ̂ erfc

(
3 + R√

4t/τ̂
+ c1

√
t/τ̂

)}
,

Ĵ 1
7 = −2

{
(a2

1 − b2
1)a14 + 2a1b1b14

(a2
1 + b2

1)
2

erfc

(
3 + R√

4t/τ̂

)
− a1a14 + b1b14

a2
1 + b2

1

√
4t

πτ̂
e− (3+R)2 τ̂

4t +

−
(

a14

[
a2

1 − b2
1

(a2
1 + b2

1)
2

− a1(3 + R)

a2
1 + b2

1

− 2
t

τ̂

]
− b14

[
a1(3 + R)

a2
1 + b2

1

− 2a1b1

(a2
1 + b2

1)
2

])
�4e(3+R)a1+(a2

1−b2
1) t

τ̂ cos θ4

+
(

b14

[
a2

1 − b2
1

(a2
1 + b2

1)
2

− a1(3 + R)

a2
1 + b2

1

− 2
t

τ̂

]
+ a14

[
a1(3 + R)

a2
1 + b2

1

− 2a1b1

(a2
1 + b2

1)
2

])
�4e(3+R)a1+(a2

1−b2
1) t

τ̂ sin θ4

}
,

Ĵ 1
8 = −c14

c2
1

{
erfc

(
3+R√
4t/τ̂

)
−c1

√
4t

πτ̂
e− (3+R)2 τ̂

4t −
[

1−c1(3+R)−2c2
1t

τ̂

]
ec1(3+R)+ c2

1 t

τ̂ erfc

(
3+R√
4t/τ̂

+c1

√
t/τ̂

)}

+erfc

(
3+R√
4t/τ̂

)
.

Appendix C: Coefficients am, bm, cm

The set of the coefficients am, bm and cm in Appendix B represent various partial-fraction decompositions which
are detailed here. The expressions for am , bm , and cm are given implicitly in terms of the partial fractions because
the exact expressions are very complicated. We begin with finding the roots of the cubic functions in [G(r, s)]n(see
(8) and (9)):

X̂3 + c12

c11
X̂2 + c13

c11
X̂ + c14

c11
= (X̂ − Z1)(X̂ − Z̄1)(X̂ − c1), where Z1 = a1 + b1i and Z̄1 = a1 − b1i,

X̂3 + c22

c21
X̂2 + c23

c21
X̂ + c24

c21
= (X̂ − Z2)(X̂ − Z̄2)(X̂ − c2), where Z2 = a2 + b2i and Z̄2 = a2 − b2i.

Then, the quotients of the cubic function contained in the series expansion are simplified by partial-fraction expan-
sion. Performing the expansions yields the following results:
for n = 0
liquid drop:

e−(1−R)X̂

s

[
(κ X̂ + 1)(RX̂ − 1)

(X̂ − Z1)(X̂ − Z̄1)(X̂ − c1)

]
+ e−(1+R)X̂

s

[
(κ X̂ + 1)(RX̂ + 1)

(X̂ − Z1)(X̂ − Z̄1)(X̂ − c1)

]

= e−(1−R)X̂

s

[
Z3

X̂ + Z1
+ Z̄3

X̂ + Z̄1
+ c3

X̂ + c1

]
− e−(1+R)X̂

s

[
Z4

X̂ + Z1
+ Z̄4

X̂ + Z̄1
+ c4

X̂ + c1

]
;

gas:

e−(R−1)X̂

s

[
(κRX̂ + 1)(X̂ − 1)

(X̂ − Z1)(X̂ − Z̄1)(X̂ − c1)

]
+ e−(1+R)X−2X̂

s

[
(κRX̂ + 1)(X̂ + 1)

(X̂ − Z1)(X̂ − Z̄1)(X̂ − c1)

]

= e−(R−1)X̂

s

[
Z3

X̂ + Z1
+ Z̄3

X̂ + Z̄1
+ c3

X̂ + c1

]
+ e−(1+R)X−2X̂

s

[
Z4

X̂ + Z1
+ Z̄4

X̂ + Z̄1
+ c4

X̂ + c1

]
;

Shear stress:

e−RX̂

s

[
(κRX̂ + 1)(R2 X2 − 3RX + 3)

(X̂ − Z1)(X̂ − Z̄1)(X̂ − c1)

]
− e−RX̂

s

[
(κRX̂ + 1)(R2 X2 + 3RX + 3)

(X̂ − Z1)(X̂ − Z̄1)(X̂ − c1)

]

= e−(1−R)X̂

s

[
1 + Z9

X̂ + Z1
+ Z̄9

X̂ + Z̄1
+ c9

X̂ + c1

]
− e−(1+R)X̂

s

[
1 + Z10

X̂ + Z1
+ Z̄10

X̂ + Z̄1
+ c10

X̂ + c1

]
.
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for n = 1,
liquid drop:

e−(3−R)X̂

s

[
(κ X̂ + 1)(RX̂ − 1)(X̂ − Z2)(X̂ − Z̄2)(X̂ − c2)

(X̂ − Z1)2(X̂ − Z̄1)2(X̂ − c1)2

]

+e−(3+R)X̂

s

[
(κ X̂ + 1)(RX̂ + 1)(X̂ − Z2)(X̂ − Z̄2)(X̂ − c2)

(X̂ − Z1)2(X̂ − Z̄1)2(X̂ − c1)2

]

= e−(3−R)X̂

s

[
1 + Z5

X̂ + Z1
+ Z̄5

X̂ + Z̄1
+ c5

X̂ + c1
+ Z6

(X̂ + Z1)2
+ Z̄6

(X̂ + Z̄1)2
+ c6

(X̂ + c1)2

]

+e−(3+R)X̂

s

[
1 + Z7

X̂ + Z1
+ Z̄7

X̂ + Z̄1
+ c7

X̂ + c1
+ Z8

(X̂ + Z1)2
+ Z̄8

(X̂ + Z̄1)2
+ c8

(X̂ + c1)2

]
;

gas:

e−(1+R)X̂

s

[
(κRX̂ + 1)(X̂ − 1)(X̂ − Z2)(X̂ − Z̄2)(X̂ − c2)

(X̂ − Z1)2(X̂ − Z̄1)2(X̂ − c1)2

]

+e−(1+R)X̂−4X̂

s

[
(κRX̂ + 1)(X̂ + 1)(X̂ − Z2)(X̂ − Z̄2)(X̂ − c2)

(X̂ − Z1)2(X̂ − Z̄1)2(X̂ − c1)2

]

= e−(1+R)X̂

s

[
1 + Z5

X̂ + Z1
+ Z̄5

X̂ + Z̄1
+ c5

X̂ + c1
+ Z6

(X̂ + Z1)2
+ Z̄6

(X̂ + Z̄1)2
+ c6

(X̂ + c1)2

]

+e−(1+R)X−4X̂

s

[
1 + Z7

X̂ + Z1
+ Z̄7

X̂ + Z̄1
+ c7

X̂ + c1
+ Z8

(X̂ + Z1)2
+ Z̄8

(X̂ + Z̄1)2
+ c8

(X̂ + c1)2

]
.

Shear stress:

e−(2−R)X̂

s

[
(κRX̂ + 1)(R2 X2 − 3RX + 3)(X̂ − Z2)(X̂ − Z̄2)(X̂ − c2)

(X̂ − Z1)2(X̂ − Z̄1)2(X̂ − c1)2

]

−e−(2+R)X̂

s

[
(κRX̂ + 1)(R2 X2 + 3RX + 3)(X̂ − Z2)(X̂ − Z̄2)(X̂ − c2)

(X̂ − Z1)2(X̂ − Z̄1)2(X̂ − c1)2

]

= e−(2−R)X̂

s

[
1 + Z11

X̂ + Z1
+ Z̄11

X̂ + Z̄1
+ c11

X̂ + c1
+ Z12

(X̂ + Z1)2
+ Z̄12

(X̂ + Z̄1)2
+ c12

(X̂ + c1)2

]

−e−(2+R)X̂

s

[
1 + Z13

X̂ + Z1
+ Z̄13

X̂ + Z̄1
+ c13

X̂ + c1
+ Z14

(X̂ + Z1)2
+ Z̄14

(X̂ + Z̄1)2
+ c14

(X̂ + c1)2

]
.

Here Zm = am + bm i, Z̄m = am − bm i and cm is a real constant. (minus sign correction made).
It should be noted that the values of the coefficients am , bm , and cm , 3 ≤ m ≤ 8 in the liquid-drop and gas

expressions and 9 ≤ m ≤ 14 in the shear-stress expressions are different, even though the same notations are used
in the expressions.
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